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Abstract
In many problems in molecular and solid state structures one seeks to determine
the energy-minimizing decoration of sites with different atom types. In other
problems, one is interested in finding a decoration with a target physical
property (e.g. alloy band gap) within a certain range. In both cases, the sheer
size of the configurational space can be horrendous. We present two approaches
which identify either the minimum-energy configuration or configurations
with a target property for a fixed underlying Bravais lattice. We compare
their efficiency at locating the deepest minimum energy configuration of face
centered cubic Au–Pd alloy. We show that a global-search genetic-algorithm
approach with diversity-enhancing constraints and reciprocal-space mating can
efficiently find the global optimum, whereas the local-search virtual-atom
approach presented here is more efficient at finding structures with a target
property.

(Some figures in this article are in colour only in the electronic version)

Along with the traditional study of the properties of a given molecular or crystalline system,
recent years have witnessed the development of the corresponding inverse problem, where
one inspects large databases of molecules or periodic solids in search of a structure with
a given target property [1–5]. Such quests often focus on materials derived from a given
skeletal structure, the sites of which can be decorated with different substituents—chemical
groups in chemistry [4, 5] and different atoms in solid solutions [1–3]. There are M N

possible configurations for a cell of N lattice sites occupied by M substituents. These
configuration spaces feature broad ranges of physical properties, as illustrated by the differing
optical properties of random versus ordered zincblende semiconductor alloys at fixed chemical
composition [6, 7], by the range of Curie temperatures in Mn substitution patterns on the
cation sublattice of binary semiconductors [2], by the thermoelectric response of structures
with the same chemical composition but with different effective-mass anisotropy [8]. Perhaps
the best-known manifestation of the dependence of properties on configuration is the difference
in total energies between various decorations of structures with the same chemical formula, as
evidenced by the phenomenon of isomerism in molecular chemistry and in solids, e.g. the
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Figure 1. Total number of local minima of an AuPd fcc alloy in 2 × 2 × n supercells. The energy
is obtained from a first-principles cluster expansion [18] OCE(σ ). The solid line represents all local
minima. The dashed line accounts only for the minima located within 3% of the deepest minimum
energy configuration L10. The total number of local minima is seen to grow exponentially; most of
these are located close in energy to L10.

existence of the many long-period CuPd superstructure variants [9] and numerous polytypes of
SiC [10]. Indeed, the search for atomic decorations of a given lattice type (e.g. fcc, bcc) which
gives the minimum total energy is one of the classic problems of alloy lattice theory [11–13].

Configuration search faces two problems. First, evaluating the property O(σ ) of the
relaxed configurations σ can be onerous in terms of computer resources. In that case, it
is impractical to evaluate every single candidate [13] of a space comprising M N structures.
Second, many physical properties exhibit multiple local minima when the atoms are swapped
on lattice sites. Finding the global minimum-energy configuration is always a challenge for
search methods. This can be illustrated for an alloy problem using the total energy of fcc
AuPd configurations calculated from first principles. Figure 1 shows the total number of local
minima (configurations for which any Au ⇔ Pd atom swap raises the formation enthalpy)
in 2 × 2 × n supercells of an fcc AuPd alloy with respect to the size of the configuration
space. We see that the number of configurational local minima grows exponentially with
the number of sites. The complexity of the configuration space, as evidenced by figure 1,
raises the question of the reliability of a search procedure. We will address this issue by
quantifying the average number of O(σ ) evaluations which are necessary for obtaining the
deepest minimum energy configuration within each 2 × 2 × n supercell. As will be seen,
this approach yields two results: (i) it allows us to identify two very different types of search
application; (ii) it allows us to rigorously compare different search methods. Indeed, we find
that search problems can be separated into a ‘ground-state configuration search’ where the
precise global minimum is the required outcome, and a ‘target property configuration search’
where one is not seeking the exact minimum-energy configuration but rather a set of pertinent
configurations which fulfill a certain fuzzy requirement. An example of the first case is the
identification of thermodynamically stable atomic configurations at T = 0 K. An example
of the second case would be the search for a (Ga, Mn)As alloy configuration [2] with a
‘high’ Curie temperature. The configuration with maximum Curie temperature may not be an
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adequate solution, since synthesizing it precisely may be impractical. The issue of a rigorous
comparison between different search methods is very much lacking in the current material
design literature. Indeed, the related field of ‘general space group optimization’ (in which
configurational degrees of freedom as well as positional degrees of freedom are part of the
search) has seen the introduction of genetic algorithms [14–16] as well as relatively simple
random search approaches [17]. It is not certain at which point (with respect to the size of the
system) the complexity of genetic algorithms is warranted.

Generally, optimization methods are separated into local-search methods (such as the
conjugate gradient approach)—which travel from known configurations to better neighboring
configurations until a local minimum is found—and global-search methods—which have the
ability of finding better configurations via global transformations (such as swapping blocks
of atoms between structures) of known configurations. In this paper we demonstrate that: (i)
the ‘deepest minimum energy configuration search’ can be efficiently solved for using a global-
search method, here a genetic algorithm (GA) where motifs passed on from parents to offspring
are identified in reciprocal space and where the size of the region of explored configuration
space is enhanced via a diversity constraint, and (ii) the ‘target property configuration search’
problem can be solved efficiently with a continuous local-search method. In the past, solving
discrete configuration search problems—for which gradients do not exist a priori—were
limited to discrete optimization methods such as simulated annealing. We discuss a procedure,
the virtual-atom approach (VA), based on the mapping of a discrete configuration space onto a
continuous configuration space, as introduced in Wang et al [4].

Both GA and VA search methods are applied to finding the structure with minimum
formation enthalpy OCE(σ = {S0, . . . , SN }) of an Au1xPdx alloy. Each search is performed
within a single cell-shape at a time, e.g. cell vectors are not optimized. All results in
this paper are presented for single cell-shape searches. In practice, one is interested in
the configuration with minimum-energy, or optimal target-property, across all cell-shapes
with N or fewer atoms. As shown in [28], such a search can be performed by exploring
a finite set of cell-shapes with N or fewer atoms. The occupation by an Au or Pd atom
of each lattice site i in the supercell is represented with a discrete spin Si = ±1. The
enthalpy OCE(σ ) was previously parameterized [18] using cluster expansion. This functional
describes configurational energetics by fitting an Ising-like Hamiltonian of pair and many-body
interactions to a set of ∼40 first-principles total-energy calculations. The formation enthalpies
of relaxed fcc AuPd structures outside the fitting set are predicted to within 3 meV per atom of
their LDA value. As a result, we expect that the behavior of optimizers which rely on OCE(σ )

only will behave quantitatively in the same way when applied directly to an ab initio functional.
We next discuss the main features of our GA and VA methods.

Reciprocal-space genetic algorithm: any genetic algorithm mimics natural evolution and
survival of the fittest in order to optimize a fitness or physical prospect O(σ ) of interest. The
efficiency of genetic algorithms depends primarily on mating, i.e. the ability of parents to pass
on favorable traits to their offspring. For instance, the approaches of [14, 19] swap blocks
of atoms between configurations, thus combining the motifs in each block into the offspring.
Unfortunately, it also creates artificial boundaries across which ‘motifs’ are not inherited
from parents, but are rather an artifact of the mating procedure. We introduce reciprocal-
space mating (see figure 2(a)), where an intermediate offspring configuration is created by
swapping the amplitudes of the finite set of structure factors S(k) of the periodic supercell (k
are the allowed reciprocal-space vectors). These amplitudes constitute a seamless set of motifs
spanning the whole supercell. Indeed, the S(k) represent concentration waves of A/B atomic
material. In contrast to prior real-space mating procedures [14, 20, 19], with our approach, the
occupation of each site is correlated with the occupation of all other sites within the supercell. A
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(a) Reciprocal-Space GA (b) Virtual Atom

Figure 2. Schematics of (a) the reciprocal-space mating, and (b) the virtual-atom algorithm. In
the former, pale (red) and dark (blue) circles denote the occupation of a lattice site by an Au or
Pd atoms in the parent configurations P1 and P2. The intermediate offspring configuration Oi is
constructed from the concentration waves (solid lines) of AuPd material present P1 and P2, i.e. from
their structure factors. A physical configuration is obtained via a normalization step. The virtual
atom (b) implements a local-search method where the decision to explore a neighboring discrete
configuration is deduced from the gradient at the original discrete configuration.

final offspring configuration is obtained by normalizing the spins of the intermediate offspring
to Si = ±1 depending on the sign of their real value. This approach can be readily expanded
to problems with more than two substituents by adequately partitioning the complex plane.
Genetic algorithms generally have the unfortunate propensity of ‘locking’ onto a set of more or
less favorable traits, until eventually the population is composed entirely of clones of a single
individual. To avoid this problem, we enforce diversity constraints ensuring that each individual
configuration is unique within the existing population.

The virtual-atom approach is an alternative local-search approach for obtaining the global
optimum which uses the information contained within the gradient of the function δO(σ ). The
challenge is to transform the discrete problem of decorating lattice sites with either A-type or
B-type atoms into a continuous problem where discrete atoms are replaced by ‘virtual atoms’
which change continuously from pure A to pure B. This type of approach first surfaced in
structural design engineering as early as 1988 [21], but has been used only recently for material
design by Wang et al [4]. The virtual-atom approach replaces the discrete spins Si = ±1 by
continuous spins S̃i ∈ [−1, 1], which represent mixtures of xi A-type atoms with (1 − xi)

B-type atoms (with S̃i = 2xi − 1) at each site i (in the following, tilde indicates continuous
quantities). This approach differs from the virtual-crystal approximation [22] in that each site
i has a different concentration xi . The derivative δÕ(σ )/δ S̃i takes on the meaning of how
desirable it is for site i to be occupied by one type of atom rather than the other. With this
derivative in hand, gradient-driven local-search methods can be used to optimize discrete-
configuration problems1.

There are two problems with such an approach. First, the virtual configuration σ̃0 obtained
from a gradient-driven method is not necessarily a physically realizable configuration (where
each site is occupied by either an A-type or a B-type atom). Second, the physical minimum-
energy configuration is not necessarily the configuration closest to the continuous minimum-
energy configuration, nor indeed does it have to be in its neighborhood. Since a discrete set
of points is targeted, imposing physical constraints via Lagrange multipliers will only lead the
optimization procedure to the nearest-lying physical configuration, irrespective of the value of
O(σ ).2 For this reason, we introduce a local-search method which only uses physical atoms,

1 Computation alchemy [27] constitutes implementation of such fictitious gradients ab initio; this, to the best of our
knowledge, has never been used for material design.
2 We thank Peter Graff for discussing this point.
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yet still makes use of the virtual-atom gradient to go from one physical point to the next.
This method is described in figure 2(b) and proceeds as follows. Starting from a physical
configuration σ0, a spin direction Si is picked at random and its gradient δO(σ0)/δ S̃i computed.
If the gradient is positive, we iterate with another spin direction. Otherwise, the prediction
offered by the gradient is checked by evaluating the physical prospect O(σ1) of the neighboring
physical structure σ1 in direction S̃i . We then iterate from the better structure σ0 or σ1.
Convergence is deemed achieved when all spin directions have been explored without finding
a better physical structure. In this way, the algorithm hops from one physically realizable
structure to the next, avoiding the pitfalls associated with unphysical structures. A similar
algorithm has been proposed recently [5], with the difference that all gradient directions are
evaluated at each step, and that the algorithm moves in the direction indicated by the lowest
gradient.

Importance of a statistical comparison: since O(σ ) contains many local minima (see
figure 1), any local-search method, such as VA, must be restarted a number of times from
different positions in the configuration space to ascertain that a global optimum has been found.
As for genetic algorithms, they are stochastic in essence. Hence both GA and VA efficiencies
are meaningful only on a statistical basis. To this end, we document 〈N〉, the average number
of evaluations O(σ ) before which 380 out of 400 independent runs have found target structures
(i.e. 95% confidence). Since the VA approach contains two types of evaluation, O(σ ) and
δO(σ ), we will present VA results ‘including gradient cost’ and ‘excluding gradient cost’. For
practical purposes, we set the cost of computing δO(σ ) as equivalent to the evaluation of O(σ ).
Actual cost will differ depending on the functional explored and on implementation.

We study the efficiency of both VA and GA at finding the target structures in 2 × 2 × n
supercells of the fcc Au1−xPdx system, with n = 3–12. The global optimum of each of these
supercells is a multiple of the L10 decoration, with a formation enthalpy of −84.28 meV/atom.
Note that L10 is not a true ground state of AuPd, but only of the specific 2 × 2 × n supercells
that we investigate [18]. This result was obtained as part of the deepest minimum-energy search
reported below, by running the genetic algorithm for a very long time.

To establish the expectation for a good search method, a random search approach was first
applied where candidate structures were picked randomly until one satisfied the target property
requirement. We find that solving for a space composed of 4096 configurations requires as
many as 6000 evaluations of O(σ ) (neither in this approach nor in the VA or GA approach did
we keep track of the previously computed O(σ )).

Deepest minimum energy configuration search: figure 3(b) gives the average number of
evaluations necessary for obtaining the exact global minimum with respect to the size of the
configuration space. We observe a crossover between the efficiencies of the two approaches as
the configuration space increases in size, and hence in complexity (as evidenced by figure 1).
Indeed, for a system consisting of 48 atoms, reciprocal-space GA will investigate as few as
6000 configurations before finding the minimum, whereas the virtual-atom approach needs as
many as 10 times more evaluations. It should be noted that the computational effort necessary
to find the deepest minimum energy configuration grows exponentially with the number of
atoms N for both search procedures. This is not surprising since solving the Ising problem
in three dimensions is ‘NP-hard’ [23, 24]. More to the point, it is not expected that a search
procedure exists (for a deterministic computer) for which the required computer effort would
grow at most polynomially with N .

Target property configuration search: Figure 3(b) gives the number of evaluations
necessary for obtaining at least one structure with a formation enthalpy lower than −81.75 meV,
i.e. within three per cent of the minimum-energy configuration (L10) obtained above. The local-
search virtual-atom approach is quite equal to resolving this particular search problem. Indeed,
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(b)  Target-Property Search(a)  Deepest Minimum Search

Figure 3. Deepest minimum (a) and target property (b) configuration search for an AuPd fcc alloy
in 2 × 2 × n supercells. The energy is obtained from a first-principles cluster expansion [18]
OCE(σ ). Shown are the average number of evaluations 〈N〉 of OCE(σ ) necessary to obtain (a) the
deepest minimum energy configuration, and (b) at least one target configuration in 95% of the runs.
A target configuration is defined as any configuration within 3% of the deepest minimum energy
configuration L10. The shaded area represents the virtual-atom results ‘including’ (upper boundary)
and ‘excluding’ (lower boundary) the cost of evaluating the derivatives δO(σ ), where the cost of
one derivative in one direction is set equal to the cost of one O(σ ) evaluation. GA results have been
optimized with respect to population size.

even with a 48-atom supercell, a pertinent structure is found on average after evaluating less
than a hundred configurations out of the 248 possible candidates3. This result is of import since
it confirms that VA and related approaches [4, 5] put configuration searches well within the
reach of first-principles functionals, thus allowing the quantitative prediction of new structures
with desired properties.

In summary, we have studied two different types of search problem: (i) the ‘deepest
minimum energy configuration search’ where finding the exact optimum decoration suffers
no compromise, and (ii) the ‘target property configuration search’ where one is interested in
target structures within a certain range of the physical prospect O(σ ). In the case of complex
configuration spaces with many local minima, the more stringent expectations of the former
search require a global-optimization method such as the reciprocal-space genetic algorithm
presented here. In the latter case, a local-search method such as the virtual-atom approach, with
its ability to directly focus on local minima, proves more than adequate, since the problem can
be solved within the first hundred calls to the functional for systems up to 48 atoms. This puts
such studies well within the range of more computationally intensive functionals like density
functional theory.

This work was supported by DARPA, Defense Sciences Office, under NREL Contract No.
DE-AC36-99GO10337. We acknowledge the use of the Cluster Expansion ATAT package [25]
and the genetic-algorithm library EO [26].

3 This result may be specific to the metallic alloy under consideration since, as shown in figure 1, a majority of the
local minima fit the pertinent-structure target property requirement.
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